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The simulation of crack propagation processes in rock engineering has been not only a research hot spot
among scholars but also a challenge. Based on this background, a new numerical method named
improved kernel of smoothed particle hydrodynamics (IKSPH) has been put forward. By improving the
kernel function in the traditional smoothed particle hydrodynamics (SPH) method, the brittle fracture
characteristics of the base particles are realized. The particle domain searching method (PDSM) has also
been put forward to generate the arbitrary complex fissure networks. Three numerical examples are ana-
lyzed to validate the efficiency of IKSPH and PDSM, which can correctly reveal the morphology of wing
crack and the laws of crack coalescence compared with previous experimental and numerical studies.
Finally, a rock slope model with complex joints is numerically simulated and the progressive failure pro-
cesses are exhibited, which indicates that the IKSPH method can be well applied to rock mechanics engi-
neering. The research results showed that IKSPHmethod reduces the programming difficulties and avoids
the traditional grid distortion, which can provide some references for the application of IKSPH to rock
mechanics engineering and the understanding of rock fracture mechanisms.
� 2021 Published by Elsevier B.V. on behalf of China University of Mining & Technology. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Rock is a typical anisotropic material, which contains large
amounts of inherent defects with relatively lower strength. These
defects include faults, fissures, joints, holes, interlayers and so on,
which makes rock exhibit the characteristics of heterogeneity,
non-linearity, and strong discontinuity [1]. Furthermore, under
complex multi-field coupling conditions [2], the rock structures
may fail due to these defects. Therefore, how to correctly describe
the discontinuous characteristics of rock masses has been a hot but
difficult problem in recent years.

As an important supplement and extension of experimental
research and theoretical model, numerical simulation has devel-
oped into the third method of scientific research [3,4]. Compared
with the complexities of experimental research and the limitations
of theoretical research [5], numerical simulation can give accurate
solutions and predictions as long as reasonable constitutive rela-
tions and calculation parameters are given. Hence, the simulation
of the heterogeneity and discontinuity of rock structures has been
more and more popular among scholars all over the world.
The finite element method (FEM) is one of the earliest numerical
methods to study the rock fracturemechanics. However, uncertain-
ties exist in the crack propagation directions [6], in other words, the
crack propagation direction is not previously known. As a conse-
quence, FEM needs to change the grid division of crack tips at every
time step. Early researches on crack propagation of rock materials
mainly included two types, namely mesh re-division method [7,8]
and the joint interface element method [9]. The mesh re-division
method has a high demand for the quality of the mesh division,
so the complex crack mesh will be extremely distorted, leading to
the inaccuracy of the calculation results or even the calculation fail-
ure. The interface element method is sensitive to the shape and size
of the mesh. Meanwhile, this method costs huge amounts of calcu-
lation time. In order to solve these problems, the cohesive element
method has been put forward to model the rock failure processes
[10,11]. However, there exists some disadvantages such as difficul-
ties in convergence and poor adaptability of mesh. The extended
finite element method (XFEM), which is regarded as an improved
FEM, has been widely used since it was proposed in the 1990 s
[12,13]. This method uses enrichment functions to describe the
geometry of cracks. Nonetheless, for complex crack geometries
such as 3D internal cracks or multiple intersecting cracks, the appli-
cations of XFEM are still limited [14].
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The discrete element method (DEM) is another effective numer-
ical simulation method developed after FEM [15,16], which utilizes
various contact models between particles to model the whole crack
initiation and propagation process. The most representative com-
mercial softwares such as PFC2D and PFC3D developed by Itasca
have been widely used in the simulations of experimental samples
or even the rock mechanics engineering [17–21]. However, the
DEM method needs to establish the relationship between the
macro and micro parameters through parameter calibration, where
large amounts of micro parameters are requested [22]. Meanwhile,
the DEM method still has some problems in solving continuous
problems [23].

Recent numerical methods such as numerical manifold method
(NMM) [24–26], peridynamics (PD) [27–29], material point
method (MPM) [30,31], isogeometric-meshfree coupling approach
[32–35], and phase-field modeling [36,37], all have their unique
advantages in solving rock fracture mechanics with large deforma-
tion and high non-linearity, but still have some limitations. For
example, the crack tips can not be inside the element in the
NMM method [38]; the bond-based PD method has some theoret-
ical defects, which leads to the Poisson’s ratio being constant [39];
the MPM method needs to match the material points through
background grids [40].

The smoothed particle hydrodynamics (SPH) is a pure Lagrange
mesh-less numerical method, which was originally used in astro-
physical problems [41,42]. Subsequently, it has been widely
applied in solving complex fluid dynamics problems [43,44]. Due
to its Lagrangian properties, it has a unique advantage in dealing
with problems of large deformations and discontinuities. Hence,
in recent years, it has been utilized in the rock fracture mechanics.
One of the most representative works is the general particle
dynamics (GPD) method developed by Zhou and his co-workers
[5,45,46]. In their work, the 2D and 3D rock fracture programs
based on SPHmethod were developed, of which the core was based
on the principle of stiffness reduction; the improved GPD method
was used in solving the water-stress coupling problems, which is
based on the fracture of the stress bond [47–49].

The aim of this paper is to put forward a more simplified but
effective numerical method called improved kernel of smoothed
particle hydrodynamics (IKSPH) to model the fracture process in
rock mechanics. Numerical models consist of base particles rather
than meshes so it can avoid the mesh distortion. The key of the
proposed method is improving the derivative of the kernel function
in the traditional SPH method. By adding a fracture mark variable
n, the base particles satisfying the fracture criterion no longer
transmit the parameter information to the surrounding base parti-
cles, thus realizing the brittle fracture characteristics of the rock
material. Meanwhile, the particle domain searching method
(PDSM) has also been proposed to realize the formation of complex
fissure networks, which is easy and effective to operate. Compared
with previous SPH methods [47–49], the stress components of the
base particles do not need to be mapped to the stress bond, which
reduces the programming amount. Meanwhile, the arbitrary crack
shapes can be easily generated. Four numerical examples are car-
ried out to validate the proposed methods. The research results
can provide some references for the applications of SPH method
to rock fracture mechanics and the understanding of the mecha-
nisms of crack propagation as well as the crack interaction.
2. Basic IKSPH

2.1. Governing equations

Each unit point in IKSPH is called base particle, which records
all the calculation parameters and result information at every time
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step. For each base particle, the governing equations include four
parts, namely (1) continuity equation, (2) momentum equation,
(3) energy equation, and (4) motion equation, which can be
expressed as [50,51]

dqi=dt ¼
PN
j¼1

mjv ij @W ij=@xi
� �

dv i=dt ¼
PN
j¼1

mjðri=q2
i þ rj=q2

j þ TijÞ @W ij=@xi
� �

dei=dt ¼ 1
2

PN
j¼1

mjðri=q2
i þ rj=q2

j þ TijÞv ij @W ij=@xi
� �

dxi=dt ¼ v i

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð1Þ

where i is the base particle number; j the base particles which are
within the influencing range of base particle i; N the counts of base
particle j; qi and qj the i-th and j-th base particle, respectively; t the
calculation time; mi and mj the mass of the i-th and j-th base parti-
cle, respectively; vi and vj the velocity of the i-th and j-th base par-
ticle, respectively, vij = vj � vi; xi the position of the i-th base
particle; ri and rj the total stress tensor of the i-th and j-th base
particle; ei the energy of the i-th base particle; Ti and Tj the artificial
viscous part of i-th and j-th base particle, Tij = Tj � Ti, which can
reduce nonphysical oscillations during calculation [52]; and Wi

andWj the kernel function of the i-th and j-th base particle,Wij =Wj-
� Wi, which can be expressed as [53]

Wðs;hÞ ¼
2=3� s2 þ 1= 2s3

� �
; 0 6 s < 1

1= 6ð2� sÞ3
� �

; 1 6 s < 2

0; 2 6 s

8>><
>>: ð2Þ

where h is the smoothing length; and s the ratio of the base particle
distance and the smoothing length.

2.2. Constitutive equation

The total stress tensor r consists of two parts: (1) the hydro-
static pressure p and (2) the shear stress s. Therefore, r can be
expressed as

r ¼ �pdþ s ð3Þ
where d is the kronecker symbol; and p the hydrostatic pressure
which can be estimated by the solid state equation of Mie-
Grüneisen [51].

p ¼ 1� Cg=2ð ÞpH þ Cqe ð4Þ
where pH is the Hugoniot curve function; C the Grüneisen parame-
ter; and g = q/q0 � 1, where q0 is the original value of base particle
density.

For solid constitutive equation, stress is a function of strain and
strain rate. By introducing Jaumann ratio, the stress rate can be
expressed as follows.

s
_ ¼ Bðe� de=3Þ þ sR ð5Þ

where s
_
is the stress rate tensor; B the shear modulus; e the strain

tensor of the base particle; and R the torsion tensor.

2.3. Time integration

IKSPH method uses the leapfrog (LF) algorithm to integrate the
discretized equation. The advantage is that the storage required in
the calculation is lower, and only one optimization valuation is
needed in every calculation step. For each base particle, its
position, velocity, density, and energy are recursively obtained by
Eq. (6).
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t ¼ t0 þ Dt

qi t0 þ Dt=2ð Þ ¼ qi t0ð Þ þ Dt=2ð ÞDqi t0ð Þ
ei t0 þ Dt=2ð Þ ¼ ei t0ð Þ þ Dt=2ð ÞDei t0ð Þ
v i t0 þ Dt=2ð Þ ¼ v i t0ð Þ þ Dt=2ð ÞDv i t0ð Þ

xi t0 þ Dtð Þ ¼ xi t0ð Þ þ Dtv i Dt=2ð Þ

8>>>>>><
>>>>>>:

ð6Þ

where t0 is the original time; and Dt the time step.

2.4. Quadrature rules

One key difference between the FEM and IKSPH method is that
IKSPH discretizes the solution space of the problem domain into a
region consisting of a number of base particles. Each base particle
has an influencing domain, and then the properties of each base
particle are calculated according to the approximation method
expressed as follows.

f ðxiÞ ¼
XN
j¼1

mj=qj

� �
f ðxjÞWðxi � xj;hÞ ð7Þ

where f is the property function of base particles.

3. Fracture treatments in IKSPH

3.1. Fracture criteria

For all the base particles, they exchange parameter information
through the derivatives of the smoothing kernel functions in their
support domains, in other words, the kernel functions of each base
particle and their derivatives are the ‘‘communication bridges”
among all the base particles. Therefore, for each base particle, it
is only necessary to improve the smoothing kernel function and
its derivative so that it can ‘‘cut off” the bridge in the supporting
domain in time when the base particle is damaged, which can cor-
rectly reflect the brittle fracture characteristics of rock materials, as
shown in Fig. 1.

The failure of the base particle follows the Mohr-Coulomb crite-
rion with a tension cut off [54], which has been widely used in the
previous numerical simulations of fracture mechanics and has
achieved good results. It can be expressed as

rf ¼ rt ð8Þ

sf ¼ c þ rf tanu ð9Þ
Fig. 1. Fracture of the base particle.
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where rf and sf are the maximum tensile stress and shear stress of
the failure surface, respectively; rt the tensile strength of the base
particle; c the cohesion of the base particle; and u the internal fric-
tion angle of the base particle. What should be noticed is that when
the base particle satisfies the tensile failure criteria (Eq. (8)), the
tensile failure first happens. If Eq. (8) is not satisfied, then IKSPH
judges whether Eq. (9) is satisfied, which means the shear failure.

For each base particle, when Eq. (8) or Eq. (9) is satisfied, the
base particle is damaged, and no longer transmits the parameter
information with other base particles. According to the IKSPH gov-
erning equation (Eq. (1)), the derivative of smoothing kernel func-
tion plays an important role in linking different base particles. So it
is necessary to improve the kernel function. Here a fracture mark
variable n is introduced in the IKSPH programme. During each
cycle, the fracture state of each base particle is judged, if Eqs. (8)
and (9) are not satisfied, then n = 1, and when Eq. (8) or Eq. (9) is
satisfied, then n = 0.

Therefore, as for the derivative of kernel function in Eq. (1), con-
sidering the brittle fracture characteristics of the base point, its
improved form can be expressed as

@Dij=@xi ¼ ni � @W ij=@xi
� � ð10Þ

where D is the improved form of kernel function considering the
brittle fracture characteristics of the base particle, Dij = Dj � Di.
Hence the modified IKSPH governing equations can be re-written as

dqi=dt ¼
PN
j¼1

mjv ij @Dij=@xi
� �

dv i=dt ¼
PN
j¼1

mjðri=q2
i þ rj=q2

j þ TijÞ @Dij=@xi
� �

dei=dt ¼ 1
2

PN
j¼1

mjðri=q2
i þ rj=q2

j þ TijÞv ij @Dij=@xi
� �

dxi=dt ¼ v i

8>>>>>>>>>>><
>>>>>>>>>>>:

ð11Þ
3.2. Particle domain searching method (PDSM)

For traditional FEM, the generation of complex fissure networks
are accompanied by complex mesh divisions, or the complex
expressions of the crack surface. For staggered multi-fissure sys-
tems, it usually takes a lot of time to apply finite element mesh
pre-treatments, or even can not be subdivided. Even if the subdivi-
sion is successful, it may be impossible to calculate due to the
extreme distortion of the grids. As for IKSPH, due to its excellent
Lagrangian characteristics, the previous works requiring special
treatments of the cracks no longer exist in this new numerical
method.

For multi fissures and complex fracture morphology, the parti-
cle domain searching method (PDSM) is introduced here to gener-
ate fissure networks, as shown in Fig. 2. Firstly, the arbitrary fissure
lines li (i = 1, 2, . . ., n) are generated within the domain X of the
base particles (one typical example is the three cyan lines in
Fig. 2). Secondly, we generate mi searching particles (the yellow
points in Fig. 2) uniformly on each fissure line li. Thirdly, for each
searching particle mi 2 li, the searching radius rd is set, which is
generally taken as the value of smoothing length h. If the base par-
ticle is covered by the searching domain Xi formed by the search-
ing radius rd, the base particle is then marked as the fissure base
particle. Finally, the fissure base particles can be directly deleted
or processed according to the method in Section 3.1. Therefore,
the arbitrary fissure networks can be generated by doing the loops
for each searching particle.

To summarize, the calculation process can be expressed as
follows.



Fig. 2. Particle domain searching method (PDSM).
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(1) Input initialization information of base particles, including
the coordinates, initial velocities, initial stress, boundary
conditions, etc.

(2) Define the basic information of the fracture networks,
including the two endpoints of each crack and the searching
particle dispersion of each crack line.

(3) For each discrete searching particle, the searching loops are
carried out with a smoothing length h as the radius. If the
base particle is covered by the searching domain formed
by the searching radius, the base particle is then marked
as the fissure base particle, and the fissure base particles
can be directly deleted or processed according to the method
in Section 3.1.

(4) The particle searching is performed at each time step (the
link-list searching algorithm [55] is applied here in this
paper), and the smoothing kernel function of each base par-
ticle pair is then updated.

(5) The density, stress, and energy are updated according to Eqs.
(3) and (11).

(6) The fracture state of each base particle is judged according to
Eqs. (8) and (9).

(7) The velocity and position of each base particle are updated,
and if the programme is not finished, return to step (3).

4. Boundary treatment

Due to the inherent defects of the base particles on or near the
boundary (whose influencing domains are truncated when inte-
grating, as shown in Fig. 3), it is necessary to treat the boundary
part to improve the computational accuracy. The virtual particles
are then introduced here to realize a better physical meaning of
the boundary. As suggested by [56], there are two types of virtual
particles, one type is type I virtual particle, which is set on the fixed
boundary, as shown in Fig. 3, and the other type is type II virtual
particle, which is set outside the boundary and symmetrically dis-
tributed with respect to the real base particle. The repulsive force
Pr exerted by the type I virtual particle on the real base particle
can be expressed as follows.

Pr ¼
v r0=rij

� �q1 � r0=rij
� �q2h i

xij=r2ij
� �

; r0=rij < 1

0; r0=rij P 1

(
ð12Þ
Fig. 3. Boundary virtual particles.
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where v is the repulsive force factor, which is generally taken to be
the square of the maximum velocity; r0 the average distance
between the base particles; rij the distance between the real base
particle and the type I virtual particle, rij = rj � ri; and q1 and q2
are set to 12 and 4, respectively.
5. Examples and discussions

In order to verify the IKSPH numerical method proposed in this
paper, four numerical examples are simulated, and the results are
compared with the existing experimental results or numerical sim-
ulation results. The example 1 is the numerical simulation of the
crack growth process under uniaxial compression of a standard
cube sample with one single inclined fissure. The example 2 is
the numerical simulation of the crack growth process under uniax-
ial compression of a standard cube sample with two inclined fis-
sures. The example 3 is the numerical simulation of the uniaxial
compression of specimens containing two pre-existing fissures.
The example 4 is an engineering simulation: the progressive failure
process of a jointed rock slope under the load of self-weight, so as
to show that IKSPH can be applied to the rock mechanics engineer-
ing. The main purpose of these numerical examples is to show the
progressive failure process, crack morphology, and crack interac-
tion law, so the numerical parameters are not strictly calibrated,
and the elastic parameters of the model are set to be consistent.
The density q = 2600 kg/m3, elastic modulus E = 17 GPa, and Pois-
son’s ratio l = 0.14.
5.1. Numerical simulation of compression and shear failure with one
single crack

The numerical example 1 comes from [57], which is shown in
Fig. 4. The sample is a standard cube specimen with a length of
50 mm and a height of 100 mm. A 15 mm long fissure is prefabri-
cated at the center of the specimen, and the angle between the
fissure and the horizontal direction is 45�. The whole sample is dis-
cretized into 12675 base particles. The model adopts displacement
loading mode, the loading rate is 5 � 10�3 m/s, and the calculation
time step is 1 � 10�8 s. The cohesion c is set to 5.95 MPa, the inter-
nal friction angle u is set to 40�, and the tensile strength rt is set to
2 MPa.

The progressive failure process of the sample is shown in
Fig. 5a. As can be seen, wing crack originates from the crack tips
and then propagates along the loading direction, and the stress
concentrates on the crack tips. The crack morphology is consistent
with the experimental results (DIC) [57], which verifies the accu-
racy of the proposed IKSPH method. The theoretical model in
Fig. 5b shows that the formation of wing crack is due to the slip
and dislocation of the upper and lower crack surfaces, and the wing
crack widens during its propagation, which indicates that the com-
press and shear action of prefabricated cracks will make the wing
crack surface open, and the numerical results can reveal this
phenomenon.



Fig. 4. Model size and base particle distribution of example 1.
Fig. 6. Model size and base particle distribution of example 2.
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5.2. Numerical simulation of compression and shear failure with two
cracks

The numerical example 2 comes from [58], which is shown in
Fig. 6. The sample is a standard cube specimen with a length of
76.2 mm and a height of 152.4 mm. Two 12.7 mm long fissures
are prefabricated at the center of the specimen, and the angle
between the fissure and the horizontal direction is 45�. The whole
sample is discretized into 12738 base particles. The model adopts
displacement loading mode, the loading rate is 5 � 10�3 m/s, and
the calculation time step is 1 � 10�8 s. The cohesion c is set to
5.95 MPa, the internal friction angle u is set to 40�, and the tensile
strength rt is set to 2 MPa.

The progressive failure process of the sample is shown in
Fig. 7a. As can be seen, the typical wing crack originates from the
crack tips just similar to example 1. However, the crack propaga-
tion of inner side is less than that of the outer side. The shear crack
occurs in the inner tips of two fissures, which is consistent with the
experimental results in [58].
Fig. 5. Crack propagation process of example 1
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5.3. Numerical simulation of compression and shear failure with
multiple cracks

The numerical example 3 comes from [59], which is shown in
Fig. 8. The sample is a standard cube specimen with a length of
150 mm and a height of 300 mm. A total number of 15 inclined
cracks are prefabricated at equal intervals. The length of the pre-
fabricated crack is L = 40 mm, the transverse spacing is
C = 45 mm, the longitudinal spacing is S = 40 mm, and the inclina-
tion angle is a = 45�. The whole sample is discretized into 11570
base particles. The model adopts displacement loading mode and
the loading rate is 5 � 10�3 m/s, and the calculation time step is
5 � 10�8 s. The cohesion c is set to 5.95 MPa, the internal friction
angle u is set to 40�, and the tensile strength rt is set to 2 MPa.

The progressive failure process of the sample is shown in Fig. 9.
As can be seen, the wing crack propagates the most in the middle
of the sample, but the least on the left and right side. The propaga-
tion and overlap of wing crack result in the interlacing of the joints
in the fractured rock masses, which is highly consistent with the
and its comparison with previous studies.



Fig. 7. Crack propagation process of example 2 and its comparison with previous studies.

Fig. 8. Model size and base particle distribution of example 3.

S. Yu, X. Ren, J. Zhang et al. International Journal of Mining Science and Technology 31 (2021) 421–428
experimental results in [59]. Thus, the accuracy and authenticity of
IKSPH in the numerical simulation of crack propagation in rock
masses are verified.

5.4. Numerical simulation of progressive failure of a typical jointed
rock slope

The numerical example 4 comes from [14], which is a rock slope
with non-persistent joints. The model size is shown in Fig. 10. The
overloading method is used to apply the gravity load on the rock
slope. The calculation time step is 1 � 10�8 s. The cohesion c is
set to 6 MPa, the internal friction angle u is set to 40�, the tensile
Fig. 9. Crack propagation process of example 3
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strength rt is set to 0.3 MPa and the whole model is discretized
into 11570 base particles.

The progressive failure process of the rock slope is shown in
Fig. 11. Fig. 11a shows the failure process of the base particle,
and Fig. 11b shows the distribution of maximum principal stress.
The crack is first generated along the joint surface, and the slope
toe is firstly destroyed. Finally it forms an obvious sliding surface.
The joints divide the slope into several fragments, which is consis-
tent with the numerical results in [14]. Therefore, the IKSPH
method proposed in this paper can be well applied to rock
mechanics engineering practice.
5.5. Computational cost analysis

The computational cost is one key index to characterize the
computational efficiency of the proposed method. In order to
investigate the computational cost of IKSPH, a typical cube speci-
men model with a length of 50 mm and a height of 100 mm is cal-
culated. Different base particle numbers are set: (1) 50 � 100 =
5000 base particles, (2) 70 � 140 = 9800 base particles, (3)
100 � 200 = 20000 base particles, (4) 120 � 240 = 28800 base par-
ticles, and (5) 140 � 280 = 39200 base particles. 1000 calculation
steps are adopted in each calculation condition. The hardware
environment of the IKSPH program in this paper is DELL T5400,
the CPU used is Intel(R) Core(TM) i5-6500 CPU @3.20 GHz
3.19 GHz, and the memory is 4.00 GB.

Fig. 12 shows the calculation cost under different particle num-
bers. The calculation time increases exponentially with the
and its comparison with previous studies.



Fig. 10. Model size and base particle distribution of example 4.

Fig. 11. Progressive failure process of example 4.

Fig. 12. Calculation cost under different particle numbers.
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increase of particle number. We can see that when the particle
number is approaching 40000, the calculation time is more than
5 h in 1000 steps, which is unacceptable. Therefore, more emphasis
should be put on the parallel computing to improve the calculation
efficiency.
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6. Conclusions

(1) A new numerical method named improved kernel of
smoothed particle hydrodynamics (IKSPH), which is aimed
at modeling the brittle fracture of rock masses, has been pro-
posed in this paper. Compared with previous studies, there
is no need to reduce the stiffness of the base point or map
the stress to the stress bond between different base parti-
cles, which has reduced programming difficulties. Mean-
while, the particle domain searching method (PDSM) has
also been put forward to generate complex fissure networks.

(2) The accuracy of the IKSPH method proposed in this paper is
verified by comparing the numerical results of samples con-
taining single or multiple cracks with the experimental and
numerical results in the previous studies. At the same time,
IKSPH can accurately simulate the opening phenomenon of
wing crack surface caused by the compress and shear action
of prefabricated cracks.

(3) A typical rock slope with multiple joints is taken as an exam-
ple for modeling. The simulation results are consistent with
previous studies, which lays a foundation for the application
of IKSPH method to rock mechanics engineering practice.

(4) The calculation efficiency under large amounts of particles is
now unacceptable, so future works should put more empha-
sis on the parallel computing both on CPU and GPU.
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